Mastering MONTAGE: An FM-X Exploration Part 2

P3viewHome

This single PART Performance contains an FM-X Part made from just two Operators. Just as in the previous example, Operator 1 (99) is the Modulator and Operator 2 (99) is the Carrier. Compare the setting on our 8 Assign Knob parameters (shown below) – these are what make the difference between these two Performance PARTS.

You can see that Faders 1 and 2 are still up full in a similar manner to the previous example.

This time when you lower Fader 1, you hear that Operator 2 is no longer just a smooth, pure tone (Sine wave) as in P4. This time OP2 has a more complex timbre all by itself, and as you raise Fader 1 you can hear the timbre (tone) change further. We know now that by altering the Spectral FORM and SKIRT we can generate a complex source Wave from just a single Operator.

If you lower Fader 2, you hear nothing. The Modulator cannot be heard by itself. You can see that Operator 1 is, again, set to Feedback on itself.

In the screenshot below, PART 1 is selected (cursor highlights the Part 1 TYPE/NAME box) so that we can view the 8 Assign Knobs for PART 1.

P3Home

The parameters have been given Names so you can see and experiment with changing this sound in real time.

AssignKnob 1: Frequency (OP Freq)
In the previous experiments we determined that Operator 1 (the Modulator’s) Frequency has been assigned to Assign Knob 1. Let’s learn about where and how this takes place. To do so let’s navigate to where Controllers are assigned to destination parameters. There are two methods to get there listed below – Learn to use both so that you can add to your navigation skills. 

From the HOME screen you can manually navigate to the Control Assign area as follows:

  • Press [EDIT].
  • Touch “Common” in the lower left portion of the screen.
  • Touch “Mod/Control” > “Control Assign”.

Alternatively, from the HOME screen you can take the following shortcut:

  • Press [SHIFT] + [HOME] (INFO).
  • From the “Overview” screen set the PART = “PART 1”.
  • Touch the box “Part 1 Control Settings”.

We want to see the setting assigned to PART 1’s Assign Knob 1.
Touch the “Auto Select” box so it turns green (active).
Move Assign Knob 1 (this will automatically select its setup screen).

AsKn1Freq

What you can learn from this screen is that physical controller (called the “SOURCE”) is “AsgnKnob 1”. Locate the SOURCE box – this is where you assign/select the Control. The parameter (or “DESTINATION 1”) is “OP Freq”, Operator Frequency. The “Curve Type” (STANDARD) and “Polarity” (Uni), you can see the graph (looks like a ramp) that increasing the Knob will increase the frequency. You can see that the OPERATOR RATE is being applied to only Operator 1 (value = +7).

Translation: The graphic next to CURVE TYPE represents what happens when the Knob is increased. You read it from left to right. You can understand this to mean: as the AssignKnob 1 is increased from minimum toward maximum the Frequency of this Operator will increase. The amount that it will increase will be detemined by the Operator Rate. You will notice that each of the 8 FM-X Operators could be included, or not, in this change – by setting an amount under the Switch for each Operator 1-8. Well, we are only using two (OP1 and OP2) so by placing a value next to Operator 1, we can conclude that turning this Knob will increase the Frequency of the Modulator at the Rate as set by the value shown – which is exactly what we concluded (by ear) in our first experiment. This screen is exactly *where* this change in Frequency is assigned to happen. 

See the +7 value for OP1 Rate, change it to hear and understand that it is the “depth” control or the amount of application of Frequency change of Operator 1. Try all values from +7 ~ 0 ~ -7, while tapping on notes. Make a setting for this value, then turn Assign Knob 1. Hear and understand how the frequency change can be reversed at the parameter assignment (and not just by changing the direction of the Assign Knob). In other words, experiment at all values. Observe that when Operator Rate = -7 you can hear how increasing the Assign Knob does the opposite of the +7 setting, it lowers the frequency of the harmonics – even though the Ratio is positive with a Standard Curve. This is very much akin to closing a filter in an analog (subtractive) environment. Hear how it darkens the tone (timbre). It could be described as “placing a blanket over the sound”, “removing air from the sound”, “rounding the sound down”, etc., etc.

Experiment by changing the Ratio parameter from positive to negative to hear and understand how controllers are applied. When Operator Rate is +7 but Ratio is set to a negative value, you have reversed the movement. The graphic changes to illustrate what you are hearing. 

Finally, change the Param 1 (Parameter 1) to see and hear how it influences the application of the Assign Knob 1. You will discover that “Param 1 = 5” is very much a linear application of the control, while a setting of “10” would apply the change very late in the movement of the knob. You have to move, see and hear this change for the concept to be clear. 

Return the sound to “start point” settings.
 
AssignKnob 2: Form (Spectral Form)
Spectral Form allows you to select from six ‘other’ waveforms other than the basic Sine wave and to construct other starting points. The setting of FORM = 113 will result in selecting one of the two Resonant Waveforms, “RES 1”. “RES 1” is described as being ‘broad’ (wide). In our previous article, we took a close up look at the parameter Assign Knob 2 is assigned to change. And we discovered that when the Skirt was unfurled a bit, we could recognize distinct differences in the “1” and “2” families of waveforms.

Sine: values 0-19
All 1: values 20-39
All 2: values 40- 58
Odd 1: values 59-78
Odd 2: values 79-97
Res 1: values 98-117
Res 2: values 118-127

Simply touch Assign Knob 2, and because the “Auto Select” function is active (green) MONTAGE will recall the Source/Destination assignment for this physical controller. Remember: Assign Knob 2 is changing the Spectral Form of the Carrier, Operator 2. As the Knob is increased the parameter is set to increase the value. The values between 98-117 are equivalent to selecting “RES 1”.

You can hear a distinct change in the character of the sound – and it is rather abrupt change at the change point. You should hear distinctly the 7 different tonal families depending on the position of Knob 2.

AssignKnob 3: Skirt (Spectral Skirt)
Skirt – all the SPECTRAL FORMS have a ‘skirt’ (except for the Sine). The wider the skirt the more harmonics are heard; and the narrower the skirt, the fewer additional harmonics will be heard. Turning the Knob assigned to “Skirt” while Form is Sine (“Form” is a value between 0-19) – will result in no change in timbre. However turning the Knob on any of the other six Forms will have a dramatic effect.

Our PART “P3”, starts with Form = “Res 1”; try moving the AssignKnob 3 through its range, listen for the change in timbre as you do; then set AssignKnob 2 to max (127) “Res 2” and try the same thing with AssignKnob 3. Notice an even more dramatic change.

P3Skirt
Simply touch Assign Knob 3 to view the assignment screen. As you increase the Assign Knob 3 you are setting the waveform to allow more harmonics. The screen tells us that we are adjusting the Skirt for OP2, the Carrier. 

AssignKnob 4: Resonance
We learned previously that the Resonance parameter will be effective on the “RES 1” and “RES 2” Forms. Turning the Assign Knob 4 with the initial settings of Performance P3 will have a dramatic effect on the resulting sound. We know that the FORM (113) is RES 1 territory, so we can anticipate that increasing Resonance will rocket the harmonics skyward. 

Note: If you need to return to the original Performance – you can simply click on RECALL in MONTAGE Connect and then the top icon showing the direction “COMPUTER > SYNTH”; This will resend the program to the Edit Buffer again – restoring it to original condition.

Touch Assign Knob 4 to view the assignment screen.

Resonance
Here the Operator Switch is turned on for OP2 which we know is the Carrier. So the Resonance movement should, indeed, be dramatic – even though the Ratio is only set to just +10. As you can hear as you move Assign Knob 4, a little goes a long way! Notice with a good ear you can “tune” (select) the harmonic that is sounding.

AssignKnob 5: Feedback
Feedback is the output of a source Operator being fed back to the input, creating a buildup in energy and in this case, since it is a Modulator being fed back on itself, expect a very subtle change in timbre. View the assignment by turning Assign Knob 5.

AssignKnob 6: EG LEVEL (Envelope Generator Level offset) 
This is Envelope Generator Level and when we navigate to Knob 6, we discover that the parameter is “OP AEG Offset”, and is being applied to the Modulator (OP1); Value = +7
Turning the Knob clockwise will increase; turning the Knob counterclockwise will decrease the Level of the Amplitude Envelope for timbre change. The more you raise Knob 6 the more you increase the influence of the Modulator. If you wanted to create an artful noise, a “spit” or some kind of chaotic noise at the attack of a sound, you would raise the “EG Level” (Knob 6) and lower the “OP1 Decay” (Knob 7), you could dramatically change the timbre of that chaotic noise by increasing the Modulator Frequency (Knob 1).

AEGoffset
The Polarity being set to Bi means that the parameter can be both increased and decreased from its originally stored value. And with this Envelope Offset, this means we can lengthen or shorten the length of time that the Modulator has influence. In a future article we will take a close look at the Amplitude Envelope Generator (AEG) of an Operator. AEG is a fancy term for, how the sound starts, what it does while it is in and how it exits in reference to its loudness (Amplitude). It describes the loudness shape of the sound. Yes, here we are offsetting that AEG but we will ultimately want to know how to setup that envelope. For now recognize that this OFFSET is being applied to or could be applied to each of the eight Operators with a differing amount of application.

Here we are simply offsetting the loudness envelope of the Modulator (OP1) so that we can easily make the timbre change component longer or shorter. 

AssignKnob 7: OP1 Decay/AssignKnob 8: OP2 Decay
Turning them left and right you can hear that they affect the duration of the Modulator and Carrier, respectively. The Amplitude Envelope shape.
Turn Knob 7 to view the Control Assignment: We will look at the “Destination 7” first = “OP AEG Decay1” (we’ll come back and explain Release later).

OP1Decay
Destination 7: “OP AEG Decay1” you see that Operator Switch #1 is active (green). The “Curve Type” is Standard, Polarity is Bipolar.

Translation: Turning this knob (Knob7) from 12 o’clock position will lengthen the envelope when turned clockwise and will shorten the envelope when turned counterclockwise. Decay determines whether the sound dies out immediately after the Attack portion. Does the sound remain at the same volume or does it diminish a bit while the key is held? Organ envelopes do not have any DECAY – they remain at the full volume all the time the key is held. A Piano envelope, by contrast, dies down a bit after the Attack portion and slowly dies out as time continues, so do all hammered, plucked or struck instruments. This behavior is considered “percussive”. The Decay setting determines if the sound dies out (or not) while a Key is held. This parameter is being applied to the Operator responsible for timbre change. The 12 o’clock position (64) represents the stored Amplitude Envelope Generator setting. 

AssignKnob 8: OP2 Decay
Turn Knob 8 to view the Control Assignment:

OP2Decay
Turning this knob from the 12 o’clock position will length the envelope and turning counterclockwise will shorten the envelope, but this time you are applying it to Operator 2 (the Carrier). Destination 8 “OP AEG Decay1”.

Translation: The difference between the Decay of the Modulator and the Decay of the Carrier is something best understood by using your ears. The Carrier will affect the overall output level, the Modulator will affect timbre change in the overall sound. So when the Modulator has a longer envelope than the Carrier it is modifying, its influence will last throughout the duration of the sound, when the Modulator’s envelope is shorter than the Carriers then its influence will be momentary.

Let’s now return to AssignKnob 7 and view the other parameter that is assigned to change when Knob 7 is moved:

W’e’ve moved the CURSOR highlight to show Destination 9: “OP AEG Release”. 

Note: It may not be immediately clear but, this control matrix is huge. Each Destination has its own settings for Curve Type, Polarity, Ratio, Parameter adjustment, etc. and there can be 16 Destination per PART! So the Curve Type and setting for this Destination can be different entirely from what we have setup for OP AEG DECAY 1 in Destination 7 which also happens to be under control of the same AssignKnob. So this one Knob is performing two different functions at two separate Destinations – each with its own response setting. 

OPaegREL
Notice it is assigned to affect both the Modulator and the Carrier: OP1 and OP2 Switches are active. “Curve Type” is Standard, the Polarity is Bi. Again the Ratio of +6 means this is a very limited adjustment – it is controlling Amplitude Envelope Generator RELEASE. Translation: what happens to the sound AFTER the key is released. So a little dab will do ya’! If you want the sound to ring out after you release the keys you can increase the RATIO in a positive direction.

Translation:
This is using Polarity = Bi. Moving the Knob from 12 o’clock clockwise will lengthen the Release time of both the Modulator and the Carrier, turning the Knob counterclockwise will shorten the Release Time. Release Time is the parameter that affects what happens when you let go of the KEY or the SUSTAIN PEDAL. It is how long it takes the sound to die out. As you can see by the Ratio setting – the Release amount is very subtle. It is not going to last for very long even when turned fully clockwise. Increasing the RATIO will impact the total length of time the sound lasts when the key is released. Between Knobs 7 and 8 you can create all kinds of envelope shapes for the sound. Notice how DECAY is different from RELEASE.

“Decay” occurs during the key being held, “Release” only occurs when the key is let go. If the Carrier Decay is very short, there may be nothing left to sound, even if the Carrier Release is set long.

TIME, LEVEL and Building FM-X Amplitude Envelopes
When you strike a Key, the behavior of the sound in terms of its loudness is describe by its Amplitude Envelope Generator. In analog synthesis this was called the ADSR (Attack, Decay, Sustain, Release) – and in general, this describes how the sound comes in out of the silence, if it is a percussive sound there will be a peak of loudness made by the Attack, it will drop off in level (Decay), and if it can be held, it will sustain, until the Key is released. But ADSR on four sliders is only one way to describe AEG. In the FM-X engine, you have series of TIME and LEVEL parameters that define this shape.

TIME is simply “how long” it takes to get somewhere.
LEVEL is simply “how loud” it is at that point.

The higher the TIME value, the longer it takes to get there. 
The higher the LEVEL value, the intenser the amplitude is at that point.

  • Press  EDIT .
  • Press [PART SELECT 1].
  • Touch “OP2”.
  • Touch “Level”.
  • Highlight TIME parameter “DECAY 1”.

TimeLevel
We experimented with AssignKnob8 set to control OP2 Decay. Here is where that particular parameter lives. Working with OP2 (Carrier) above, you will quickly understand how shortening and lengthening the Decay works. 

Highlight TIME parameter DECAY 1 (46) as shown above: Move this to a lower value (see and hear). Then move this to a higher value.  Time parameter DECAY 1 will impact what happens if you strike a key and hold it down. Lower values the sound will reach a LEVEL of 0 in spite of you holding the key – but as the values increase, you can get a longer envelope shape while the key is held, which means more time before LEVEL of 0 is reached.

Now this is important. When you change this parameter directly (Decay1), you can set it to 0 through 99 – getting the full range of the parameter. When we moved AssignKnob 8 (OP2 Decay) we were only moving through a specifically limited range of values (set by ear) and set by the RATIO setting. When you view the “OP2 DECAY” Assignment – it is Bipolar (which means we are using the Assign Knob to move above and below the stored value. The “stored” value here is “46”. So when we move the Assign Knob 8 from its 12 o’clock stored position, we can shorten and lengthen the duration of the sound – but notice the range is restriced by the Ratio setting. The RATIO setting being +20 limits the range of change. The larger the RATIO the bigger the range for the assigned knob to move above and below that stored setting.

If the Polarity was Uni this would mean we can move from the stored value but in one direction and back.  
 
Experiment with what you see and hear. Hint: the values are not a linear scale. They are designed and optimized for musical use, so the weighting of the time is concentrated in the short time area.

TIME: 

  • HOLD – the amount of time before the envelope begins, the time between Key-On and the Attack. You can delay the start of the envelope by putting a value here. (Careful, HOLD = 99 can be over a minute and half) Hint: Do not worry about the time. In seconds – set these envelopes by ear!
  • ATTACK – the amount of time between envelope start and the full Attack Level.
  • DECAY 1 – the intial decay in the sound. The Time it takes to reach Decay 1 Level.
  • DECAY 2 – the secondary decay in sound. The Time it takes to reach Decay 2 Level. If Decay 2 Level is 0 the sound will die out no matter you are holding down the keys (like a piano or any percussion instrument) If DECAY 2 Level is 0 the vibration of the instrument stops. If Decay 2 Level is a value other than 0 the AEG will eventually settle at that Level until you let go of the key. If you release the KEY prior to the TIME outlined by your AEG settings, the RELEASE parameter setting takes over. If you continue to hold down the key the sound will remain at DECAY 2 LEVEL indefinitely.

Experiment. In our next installment, we will look at two more Performances – each built, again, with just two Operators in the same Modulator:Carrier arrangement. But we’ll build an entirely different set of tones. In PERFORMANCES P4 and P3, the basic tuning of the OPERATORS was 2:1 – meaning that when a key is struck say A-440 – the Carrier outputs 440Hz, the Modulator outputs 880Hz (that is your 2:1 ratio). In the next installment we will look at two PERFORMANCE where the Modulator to Carrier Ratio is 1:1. The result will be an entirely different set of timbres. Until next time! 

Join the discussion about this lesson on the Forum here.

Haven’t had a chance to check out Part 1 of the series? Catch it here.

Ready for next lesson? Part 3 is now available here.

Download here: P3.X7B

Mastering MONTAGE: An FM-X Exploration Part 3

The zipped download (at the very bottom of this article) has two (P1.X7B and P2.X7B) MONTAGE Connect Performances. Unzip them and use MONTAGE Connect to BULK them into the Montage – You can bulk the first one, press [STORE] to write it to a USER Bank Location, then bulk the second one over.

COARSE and FINE TUNING – The Ratio Setting
We’ve mentioned that these two new FM-X Performances are built from a Modulator to Carrier tuning Ratio of 1:1, while the two previous examples were built from a tuning Ratio of 2:1. In an attempt to avoid too much mathematics, we dove right into editing existing structures. But let’s back track a bit and talk a bit about this fundamental FM concept.
 
Your typical FM tutorial will always begin with the fundamental mathematics of these Sine Wave Ratio relationships. Since we bypassed this and went directly to listening experiments, we want to be sure you understand it. And that you also don’t bog yourself down with starting always with a SINE Wave. The basic Tuning of the Operators greatly affects the tone you get when they interact. 

  • In short, a 1:1 relationship in the Tuning of the Modulator to the Carrier will produce all harmonics in the series. 
  • And a 2:1 or higher relationship in the Tuning will produce just the odd numbered harmonics in the series.

Yeah, but what does that really mean? When seeking to understand the Tuning of an Operator, we must look at the Coarse and Fine tuning settings which are referred to as Ratio.

Let’s take a look: The Coarse setting is ‘1’, the Fine setting is ‘0’: translates to a RATIO setting written 1.00: 

  • Press [EDIT].
  • Press [PART SELECT 1].
  • Touch “OP1” along the bottom of the screen (or Press the first button in row three on the right front panel which is Operator Select [1]).
  • Touch “Form/Freq” in the first column.

Operator 1 as Modulator:                                                                       Operator 2 as Carrier:
OP1Ratio  OP2Ratio

This is how MONTAGE represents “1.00” as the Ratio. What this means is when you play the “A” above middle C, it should naturally reproduce the pitch A-440. If the Ratio is 1.00 that is exactly what you will hear because A-440 x 1.00 = A-440.  If the Ratio is 2.00 (Coarse = 2) what you hear will be A-440 x 2.00 = A-880. 

When both the Modulator and the Carrier are the same value – the resulting harmonics generated will be whole integer multiples of the fundamental pitch. All harmonics are reproduced.
When the Modulator is 2.00 and the Carrier is 1.00 – the resulting harmonics generated will be every other harmonic (only the Odd harmonics ) sound familiar? 

Every whole integer multiple (every harmonic in the series) results in sawtooth waverforms. Every other harmonic in the series results in a pulse wave. When the relationship is exactly 2 to 1, the result is a special equilateral Pulse waveform called the “Square”. As the relationship gets higher and higher 3 to 1, 4 to 1, 5 to 1 the result are Pulse waves but the sound gets narrower and narrower, more nasal sounding, pinched. 

Experiment with COARSE Tuning. Set OP1 Coarse = 2,  OP2 = Coarse = 1, hear the square wave tone. Increase the OP1 Coarse to 3, hear how the sound gets narrower.

If you change the Modulator’s FINE tune setting, you will start to hear what we describe as bells – when the mathematics is not whole numbers, we describe the tone as a bell tone. You will hear why immediately. Because the Tuning of OP1 and OP2 are different than in our previous two examples (P4 and P3), even if you make the same 8 Assign Knob Settings you did previously, the result will be dramatically different.

The important thing to realize is that starting with the basic mathematical relationship between the Modulator and the Carrier has an influence on the tones/timbres you will be able to construct. You will hear immediately, that the sounds we are able to get from this pairing of Modulator: Carrier, differ in character from those we heard in our examples, P4 and P3. That is what is important here. If the math makes no sense, don’t worry about it. But don’t be afraid of it either, it is musical mathematics and useful (at times). Now on with our experiments!

PERFORMANCE P2

Examine and compare the settings for Performance P2 and P1 from the perspective of the 8 (PART 1) Assign Knob parameters:
From the HOME screen, press [PART SELECT 1]

P2 – AssignKnobs:
P2closeup

P2: Spectral “Form” (64) is in the “ODD 1” family (pulse wave) range, with the Skirt set a bit more than half-way, to taste – move Part AsgnKnob 3, “Skirt”, to hear the subtle tone color change from smoother (lower) to more edgy (higher). Play in different ranges on the keyboard to check out how the timbre changes as the Skirt is unfurled. As you continually tap the keys, change the setting and hear how the timbre changes. Then stop and play it at a setting to get a feel for how it plays.

Explore the settings here as you have learned to do in the previous two articles. The arrangement of Modulator (OP1) to Carrier (OP2) is the same in all examples – what is changing is how these eight Assignable Knobs are set to alter the resulting timbre.

Quick Reminder: the “Frequency” Knob is changing the tuning of the Modulator (OP1); “Form” is a pulse wave (Odd 1); “Skirt” will allow more harmonics on all Forms except the Sine; “Reso” will work only when Form is above 98 (Res1/Res2); “Feedback” will intensify the energy of the Modulator; “EG Level” is offsetting the envelope of the Modulator; “OP1 Decay” shortens/lengthens the Modulator; “OP2 Decay” shortens/lengthens the Carrier.

FORM Values:
Sine: values 0-19
All 1: values 20-39
All 2: values 40- 58
Odd 1: values 59-78
Odd 2: values 79-97
Res 1: values 98-117
Res 2: values 118-127 

P1 – AssignKnobs:
P1closeup

P1: Spectral “Form” (0) is the traditional “Sine”, “Feedback” is at maximum – move AsgnKnob 5 to hear the affect of the Modulator set to Feedback on itself. From round (0) to nasal (127). There are times when the Feedback parameter had a subtle effect on the overall timbre, but here, with “EG Level” up a bit – raise it to 114, then changing the amount of Feedback routed through the Modulator has a profound affect. You can begin to hear the creation of “noise”.

Noise by definition is the opposite of Music (no jokes, please, about some music being noise), but Noise is the result of all frequencies combined simultaneously, in differing balances. While Music is the antithesis, it is the organized vibrations that relate to each other in a supportive way. While Noise is chaos, Music is order. Noise as a waveform looks very random, Musical tones have a pattern that repeats.

Take the “EG Level” up to 127, and as you increase “Feedback” you will hear a bit of noise, sounds like the whoosh of wind or the ocean surf.

Return your settings to the P1 “starting position”. Explore the setting here as we have learned in the previous examples. With Feedback on the Modulator, you will notice a radical “ringing” when the FREQUENCY (Knob 1) is swept. Because we are tuning the Frequency of the Modulator and there are non-whole integer relationships being swept – you will hear what we describe as bell tones, ring modulation, ringing… (A little math here: When the Modulator to Carrier RATIO is whole numbers like 1:1 and 2:1 or even 4:1 or 4:3, the results are musical tones that we describe as pure, but when fractions are involed like, 1.50:1 or 3.50:1 or 1.73:1 we describe the tone as ‘ringing’ or a bell tone).

In this particular PART, P1, a Compressor and an Auto Wah TYPE are assigned as Insertion Effects A and B, respectively. When working with FM-X you can send the CARRIER’s output into the Insertion Effects. To view this routing:

  • Press [EDIT].
  • Press [PART SELECT 1] to view PART 1 parameters.
  • Press the lower [COMMON] to veiw “PART 1 – Common”.
  • Touch “Effect” > “Routing”:

P1FXroute

Here you can see the signal flow going left to right across this screen: the Carrier is being routed through the 3-Band EQ, which is routed to INSERT A (“VCM Compressor 376”) which is routed to INSERT B (“VCM Auto Wah”), which is routed to the 2-Band EQ, which is then delivered to SYSTEM processing – Reverb, Variation, a send is available to the Envelope Follower, and the PART Output assignment.

The Wah Effect seems to make this nasal Clavinet-type tone complete some how. The Wah Effect, in itself, is a moving filter. The Modulator “Feedback” (AssignKnob 5) seems to revel in the Auto Wah.

TASK:
Try to make as many different tones as you can from manipulating just the 8 Knobbed paramters presented here in this example. Make yourself comfortable with both when and how these parameters will interact. Know that when they have, or seem to have, no effect on the result, it is probably because the context is not proper. You should not expect to hear RESONANCE, for example, when the Spectral FORM is not “RES 1” or “RES 2” (in the range of 98-127). You will not hear the Modulator’s affect on the Carrier if the “EG Level” is too low, or the “OP1 Decay” is too quick (short) – same goes for Feedback. If Feedback is on the Modulator and the Modulator’s influence is too low or too short, then it will be impossible to hear the Feedback.

The way that you can find these things out is by going over them through exploration and experimentation. As your ear and brain start to commit some of these relationships to memory, you will know just what to do when you want a particular timbre. It is how you can become familiar with the tones and how to get them.

You should be aware now that when Operators are (Coarse/Fine) tuned to whole integer numbers 1.00, 2.00, 3.00 etc, you can make musical tones, and when Coarse/Fine results in a fraction, you make musical “bell” tones. One of the early reviews of the DX7 was confused about this, they thought that the potential for making Bell and ringing tones was some how far too dominating in the DX7 – well, if you don’t tune the Operator to WHOLE INTEGER Ratios, you will get bell tones. That’s not just true in FM synthesis, it is true in nature; it is the mathematics of what we call music! There are simply many fractions: Between 1.00 and 2.00 are 99 fractions. 1.01, 1.02, 1.03 etc.

SUPER KNOB INVOLVEMENT:
Up until now we have simply been working directly with the 8 Assignable Knobs, and nothing has been assigned (linked) to the Super Knob’s movement at all. From our experiments you may have concluded that some things make better moving controls than others. For example, assigning the SPECTRAL FORM to a Knob like the Super Knob might not be an audibly pleasing for real time manipulation, but when building sounds you might wish to have it on a Knob you can change when you desire. Spectral Form is the parameter that selects the wave shapes: Sine, All 1, All 2, Odd 1, Odd 2, Res 1 or Res 2. Once you observe the range of control you can make a decision on just how far you want your assigned controller to change the value. If Resonance is left to travel the full range you may find that the piercing high frequencies go just a little too far for comfortable listening. This is where setting limits for parameter movement becomes important. This is very much personal taste. There is no right or wrong.

So lets make an informed decision about assigning a few things to movement of the Super Knob.

Recall example PERFORMANCE: P2
We will assign control of the Modulator “Frequency” and the “EG Level” of the Modulator to the Super Knob. There are basically two steps in this process: You Assign the Part parameter to PART AsgnKnob, then you link that AsgnKnob to one the SUPER KNOB’s AsgnKnobs.

Super Knob Assignments take place, not on the PART Edit level of editing, but on the upper “COMMON/Audio” level of the architecture. Just like each Part has 8 Assign Knobs and 16 Source/Destination Control Sets, this top “Common/Audio” level of the architecture has its own 8 Assign Knobs and 16 Control Sets, as well. It is important to understand this point. The Super Knob assignments can be directed at any or all of the 16 PARTS in a PERFORMANCE. Each PERFORMANCE has an upper COMMON/Audio level of programming, and it is here that a PART joins the community of PARTS. (For more on the workings of the Super Knob see the Mastering Montage tutorial on the Super Knob).

Each Performance has a unique relationship with its PARTS via this level of the architecture. When you move or add a PART to an existing PERFORMANCE, you must establish a new relationship with the Super Knob in its new home. The settings linking a PART to the Super Knob assignments are not transferable from Performance to Performance… this is not a problem, it is a matter of each PERFORMANCE has its own relationship to its PARTS. Add a New PART you must then create a relationship for it with THIS Super Knob.

Let’s create the first one. 
Here’s how: From the P2 HOME screen:

  • Press [EDIT].
  • Press [COMMON].
  • Touch “Control” > “Control Assign”.
  • Touch the “AUTO SELECT” option to activate it (green), if necessary.
  • Turn Assign Knob 1, The KNOB name will appear in the DISPLAY FILTER: “AsgnKnob 1”.
  • Touch the box “+” to ADD a CONTROL (Source/Destination) Assignment to PAGE 1.

There are no assignments here on the upper COMMON/Audio level, initially. (FYI: there are 4 Pages of 4 Control Boxes). “InsA Param 1” will appear, as the default assignment – “touch” that parameter name to open the POP-IN menu and view your assignment options:

  • Use the DATA DIAL (just to the right of the screen) to move through the possible Destinations… or if you see the Destination you want, simply touch it.
  • Select “Part 1” > “Part 1 Assign 1”, press [ENTER]. Your screen will look like this:

AsKn1 P2

Literally, this means: Part 1’s Assign Knob 1 – which we know is “OP Frequency” (Modulator). As you turn the Super Knob you get the same result as we got previously when we turned the PART 1 Assign Knob 1, directly.

Next, lets assgin the PART 1 “EG LEVEL” (which we know is AsgnKnob 6) to Super Knob AsgnKnob #2:

  • Turn Assign Knob 2, its name will appear in the DISPLAY FILTER: “AsgnKnob 2”.
  • Touch the next “+” to ADD a CONTROL DESTINATION Assignment. It will be designated “Destination 2” as this is our second assignment.

“InsA Param 1” will appear by default. Touch that parameter name to view the POP-IN menu and your assignment options.
Select “Part 1” > “Part 1 Assign 6”, press [ENTER].

Literally: Part 1’s Assign Knob 6 – which we know is “EG Level” (OP AEG Offset) of the Modulator is now linked to the movement of Super Knob’s AsgnKnob2:

AsKn2 P2

We have now linked two of the eight Part Assign Knob parameters to the Super Knob. Turning the Super Knob, or moving an FC7 pedal plugged into Foot Controller 2, will move the assigned parameters:

  • Return to the HOME screen.
  • Press [PART SELECT 1] so you can view the 8 AssignKnobs for PART 1. 

Notice now when you turn the Super Knob (or move the optional FC7 plugged into Foot Controller 2) that Assign Knob 1 (Frequency) and Assign Knob 6 (EG Level) will move when the Super Knob is in motion!

We have linked Part Knobs 1 and 6 to the Super Knob-controlled Assign Knobs 1 and 2. This means when we turn the Super Knob, its Assign Knob position for Knobs 1 and 2 are in control of what happens to PART 1’s Assign 1 and 6 Knobs, respectively.

Next we can set a range of motion for the knobs.

Say we want to have the “Frequency” Knob sweep the entire range from 0 to 127, but would like the “EG Level” Knob to only increase from its stored condition of 80 through to 127. We can set up ranges for the movement of the Super Knob’s Assign Knobs.

To be clear: We can restrict or limit the range of movement, even change the direction of movement, by setting the minimum and maximum values for the Super Knob’s 8 Assignable Knobs:

  • From the HOME screen, touch “Motion Control”.
  • Touch “Super Knob”.
  • Here we can set the Super Knob controlled Assign 1 to full range: 0-127.
  • And set Assign 2 range to 80-127:

SKnLimits

Now when you move the Super Knob observe (see and hear) the changes.

You can select whichever AssignKnobs you want and link them to the movement of the Super Knob. Some parameters make more sense than others to control via the Super Knob. 

REVERSE THE CURSE
Let’s reverse the application of FREQUENCY parameter by reversing one of the Super Knob controlled knobs. We’ve already seen that a parameters direction can be altered on the Control Assign screen by setting the Curve, Polarity, Ratio and Param 1 appropriately. Here we will take a look at reversing the application of the Assign Knob system.

Here’s how:

  • Navigate to the Motion Control > Super Knob screen.
  • From the Home screen touch “Motion Control” located in column 1.
  • Touch “Super Knob” in column 2.

Here you can see the 8 Super Knob linked Assign Knobs. We are going to reverse the direciton of Assign Knob 1 by setting the VALUE 1 = 127 and the VALUE 2 = 0:

SKNrevAs1

You can see that the KNOB now moves contrary to the others. Value 1 shown in green and Value 2 shown in blue. And likewise the parameter now works in reverse. In our last installment, we learned that the application of the Controller can be customized on the Control Assign screen by using the CURVE TYPE, RATIO and even the parameter itself. There are many ways to accomplish the same function. Why? Because as you start to build your sounds or design your Performance PARTS you may want to link all parameters that move in the opposite direction to a specific Assign Knob. If, for example, we had another parameter we wished to reverse, we could link that parameter with COMMON Assign Knob 1. 

Programming can get very involved (and you wouldn’t want it any other way) – as you go deeper and deeper into MONTAGE you will discover that a single Knob can be doing multiple things to multiple parameter Destination each with a different scaling. For more background on the Super Knob programming see the article here

Explore and Experiment.
We have included a BONUS download: Containing the PARTS we have studied combined – since P3 and P4 are ‘bookends’ and P1 and P2 are also ‘bookends’ – they compliment each other so well. And together the random/alternate panning makes so much sense!

Performance, “P3-P4”, that combines the Parts P4 and P3 together. You will discover that they both are meant to work together. The Random Panning (hopefully you are listening in “glorious stereo” so that you can hear how they interact with each other). Assign Switches 1 and 2 will defeat the Reverb and Variation (delay), respectively, when activated. When performing these remember you can choose to either put all parameters in motion (Super Knob) or grab an individual parameter to control by directly addressing the knob. Again, we have named both the Common Assign Knobs and the individual Part Assign Knobs.

We also built a Performance, “P1-P2”, that combines P2 and P1 together. You will discover that they both are meant to work together, as well. Assign Switches 1 and 2 will defeat the Reverb and Variation (delay), respectively, when activated.

In our next installment in this series, we will look at Multi-Part AWM2/FM-X Performance that includes Arpeggios – and more. It will pull together much of what we have learned thus far.

Until next time. Enjoy!

In the meantime, join in the conversation about this lesson on the Forum here.

And if you need to catch up, check out the earlier lessons:

And if you are ready for the next lesson – Part 4 now available!

Download here:

P2_P1
Bonus

© 2024 Yamaha Corporation of America and Yamaha Corporation. All rights reserved.    Terms of Use | Privacy Policy | Contact Us